Unsupervised Learning:
Word Embedding



Word Embedding

* Machine learns the meaning of words from reading
a lot of documents without supervision

Word Embedding
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Word Embedding

* Machine learns the meaning of words from reading
a lot of documents without supervision

A word can be understood by its context

You shall know a word
by the company it keeps
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How to exploit the context?

 Count based

* If two words w; and w; frequently co-occur, V(w;) and
V(w;) would be close to each other

* E.g. Glove Vector:
http://nlp.stanford.edu/projects/glove/

V(w).V(w,) 4 N

Inner product

* Prediction based

Number of times w; and w;
in the same document


http://nlp.stanford.edu/projects/glove/

Prediction-based — Training

Collect data:
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https://www.ptt.cc/bbs/Teacher/M.1317226791.A.558.html
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Prediction-based
— Language Modeling

P(“wreck a nice beach”)
=P(wreck|START)P(a|wreck)P(nice|a)P(beach|nice)
P(b|a): the probability of NN predicting the next word.

P(next word is P(next wordis  P(next word is P(next word is

“wreck”) “a”) “nice” “beach”)
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of “START” of “wreck” of “a@” of “nice”




i-th output = P(w, = i| context)
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Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic
language model. Journal of machine learning research, 3(Feb), 1137-1155.



Prediction-based
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Prediction-based
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Prediction-based
— Sharing Parameters
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The length of x, ; and x, , are both |V].

The weight matrix W, and W, are both
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Prediction-based
— Sharing Parameters
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Prediction-based
— Various Architectures

e Continuous bag of word (CBOW) model
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predicting the word given its context

e Skip-gram
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Word Embedding
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Word Embedding
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Word Embedding

V(Germany)

e Characteristics ~ V(Berlin) — V(Rome) + V(Italy)

V(hotter) — V(hot) = V(bigger) — V(big)
V(Rome) — V(Italy) = V(Berlin) — V(Germany)
V(king) — V(queen) = V(uncle) — V(aunt)

* Solving analogies

Rome : Italy = Berlin : ?

Compute V(Berlin) — V(Rome) + V(Italy)
Find the word w with the closest V(w)




Demo

* Machine learns the meaning of words from reading
a lot of documents without supervision
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Demo

* Model used in demo is provided by [5{I[[{=
* Part of the project done by [FH{II{E ~ MRE(E
* TA: 217CH%
* Training data is from PTT (collected by =& %)



Multi-lingual Embedding
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Bilingual Word Embeddings for Phrase-Based Machine Translation, Will Zou,
Richard Socher, Daniel Cer and Christopher Manning, EMNLP, 2013




Document Embedding

e word sequences with different lengths - the
vector with the same length

* The vector representing the meaning of the word
seguence

* A word sequence can be a document or a paragraph
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Semantic Embedding
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Beyond Bag of Word

* To understand the meaning of a word sequence,
the order of the words can not be ignored.

white blood cells destroying an infection positive
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exactly the same bag-of-word di er(.ent
meaning

-
an infection destroying white blood cells » negative



Beyond Bag of Word

* Paragraph Vector: Le, Quoc, and Tomas Mikolov.
"Distributed Representations of Sentences and
Documents.” ICML, 2014

* Seq2seq Auto-encoder: Li, Jiwei, Minh-Thang Luong, and
Dan Jurafsky. "A hierarchical neural autoencoder for
paragraphs and documents." arXiv preprint, 2015

e Skip Thought: Ryan Kiros, Yukun Zhu, Ruslan
Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel
Urtasun, Sanja Fidler, “Skip-Thought Vectors” arXiv
preprint, 2015.
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